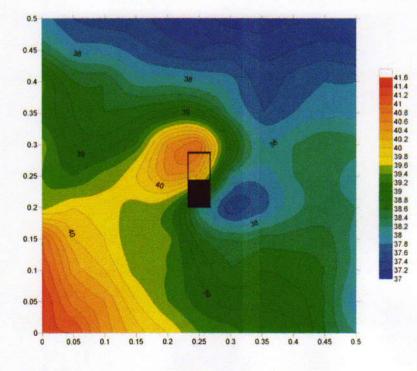
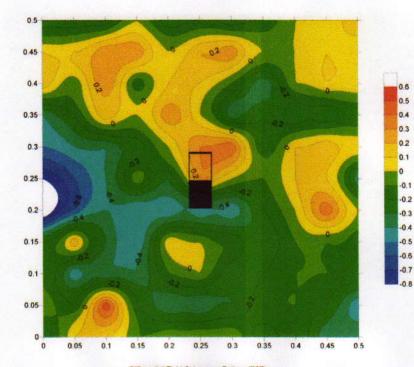

Preliminary results of testing the AULTERRA Neutralizer's capability to equalize magnetic field gradients around a cellular phone (Siemens S55) with an open line

IIREC

International Institute for Research on Electromagnetic Compatibility


IREC Field Coherence Pattern (FCP) Vertical magnetic flux density in Microtesla Testing field 0.5 m x 0.5 m Cellular telephone without AULTERRA Neutralizer chip

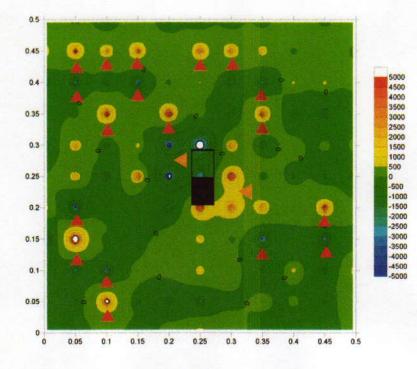
IIREC Dr. Medinger OEG, Reininghausstr. 5, A–8020 Graz • Internationales Institut für elektromagnetische Verträglichkeitsforschung • Technisches Büro für elektromagnetischen Schutz und Umwelt • Wissenschaftliche Leitung: Dr. Walter Medinger • Allgemein beeideter und gerichtlich zertifizierter Sachverständiger • Telefon: (0043) 316/58 62 30 • Fax: (0043) 316/58 62 31 • Internet: <u>www.iirec.at</u> • E-mail: info@iirec.at


IIREC

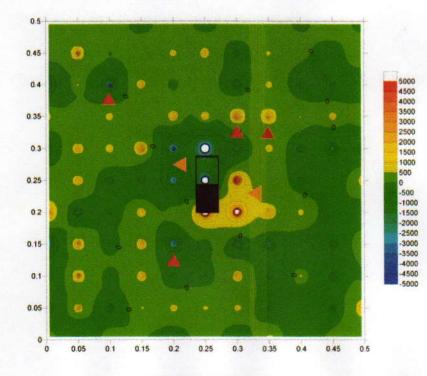
International Institute for Research on Electromagnetic Compatibility

Seite 2

IIREC Field Coherence Pattern (FCP) Vertical magnetic flux density in Microtesta Testing field 0.5 m x 0.5 m Cellular telephone with AULTERRA Neutralizer chip



Differential Field Coherence Pattern (FCP) Difference of vertical magnetic flux density in Microtesla Testing field 0.5 m x 0.5 m Effect of AULTERRA Neutralizer chip brought about in test field with cellular telephone


IIREC

International Institute for Research on Electromagnetic Compatibility

Seite 3

IREC Field Gradient Divergence (FGD) Intensity of disturbance in Microtestam2 Testing field 0.5 m x 0.5 m Cellular telephone without AULTERRA Neutralizer chip

IIREC Field Gradient Divergence (FGD) Intensity of disturbance in Microtesla/m2 Testing field 0.5 m x 0.5 m Cellular telephone with AULTERRA Neutralizer chip

IIREC

International Institute for Research on Electromagnetic Compatibility

Seite 4

Brief Comment on the results:

The Field Coherence Pattern (FCP) maps (figures 1 and 2) are representations of vertical magnetic flux density in the frequency band from static field to 18 Hz, measured in a 5 cm grid within a 0.5 m x 0.5 m testing field, with the cell phone placed in the centre of the field. The lines of equal magnetic flux density are obviously smoother with the AULTERRA Neutralizer on the cell phone than without it.

The differential FCP (figure 3) shows the effect brought about by the Neutralizer. It is characteristic that at the very position of the Neutralizer, there is a zero effect, but around it the field previously disturbed by the cell phone's low frequency signals (for which the MW radiation is only a carrier), is equalized quite well.

The Field Gradient Divergence (FGD) is calculated for each single measuring point from the second derivative of measured values, as an objective measure of disturbance in the field. In the FGD mappings (figures 4 and 5) you can recognize a considerable reduction of points with significant disturbance (> 2 mT/m2, red triangles in the charts). The orange triangles immediately around the cell phone are due to near field effects, or energetic effects of the cell phone's operation. This, of course, is not neutralized by a protective device such as the AULTERRA chip.

The overall reduction of disturbance in the testing field is evaluated as an index giving the ratio of the average disturbance at measuring points without Neutralizer and with the Neutralizer. A value above 1.0 denotes an effective protection. The AULTERRA Neutralizer achieved an excellent result of 1.2.